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1. Introduction

The effect of container boundaries on the Stokes resistance of a
particle moving in a viscoelastic fluid has been found as a correction to
the velocity (U;,ﬁ;) in an infinite region, and is given by

U=0_+k%k - F/Gnuol + 0(2-2) , (1.1a)

Q

T +0(27% . (1.1b)

Here U and 0 are respectively the translational and rotational velocities of
the particle under the influence of an outside force -F and outside torque

-L when located at a distance % fpom a bgundary whose wall-effect tensor
(Brenner [19643]) is ;. Because of the non-linearity of the fluid's constitu-
tive relation the velocities (6;,ﬁ;) with which the particle would move in
an unbounded domain under the influence of the same force and torque are

given by non-linear equations

T, =0(FD , T, = LFD . (1.2)

Hence, in general, it is not possible to conveniently express the wall effect
as a force correction formula. In the Newtonian case the linearity of (1.2)
renders the inversion of (1.1) a trivial calculation, and in fact Brenner [1964a]
first obtained this formula by inversion of his force correction formula valid
for Newtonian fluids only. The only restriction on the constitutive equation
for the validity of (1.1) is that it must describe an isotropic fluid which
has a lower Newtonian regime with zero-shear viscosity My *
When the outer boundary possesses a high degree of symmetry the error

estimate in (1.,1) is reduced to O(Q-a). Several cases of experimental interest
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fall into this cafegory. Explicit fofmulae for the terms of 0(2—2) are
giveﬁ, and from these the rotational stability of sedimenting particles can
be deduced. In particular, it is shown why the edgewise position is the
stable orientation for a disk sedimenting in a circular cylinder., It is
also possible to explain the radial migration, observed by Tanner (1964),

for spheres falling along the axis of a tube filled with a polymer solution.

2. Constitutive Relations

The analysis given below is based on the constitutive relation of

incompressible Rivlin-Ericksen (1955) fluids which is given by

= - 1p + f(a -(2), vee AN

-1

> (2.1)

where p is the scalar pressure and f is an isotropic tensor function of the

Z(1)

Rivlin-Ericksen tensors A( ) (L =1,...,N). The tensor A is twice the

rate of strain tensor, and the highef order tensors are constructed from the

recurrence relation .
i S(N-1) L Loy = i ;

AN _ DA (1) F(N-1) F(N-1) 2(1)

+ 2{A 1. (2.2)

The corotational time derivative which appears in (2.2) can be written as an

operator of the form

%t.z %%_,r %[ xp-ox- 1, (2.3)

where D/Dt is the material derivative and w the vorticity. For sufficiently

slow motions® it can be shown that f can be approximated by multinomials in

1 These motions are slow in the viscoelastic sense, but are not necessarily

low Reynolds number flows.
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the A . After appropriate reduction such multinomial expansions can be
ordered as follows:

1 - 1p + uoﬁ(l) 1st order (Newtonian), (2.4)

3 u
)]

ii ok ¥ =(2) =(l))2

T =T+ oA + u2(A 2nd order, (2.5)
piid _ pi 818‘3) + 8,A M 2D ED 50, B, (erh 2HE) 31 order,

(2.6)
etc.,

vhere Mo the a's and the B's are material constants. These slow flow
approximations were first obtained by Langlois and Rivlin [1959] directly
from (2.1); later Coleman and Noll [1961] were able to derive the same
equations from their theory of simple fluids.

In order to substantiate the generality claimed for the principle
result (1.1) we examine thé position of thé'Riylin—Ericksen theory within
the framework of more gencral theories. In the first place it has been
shown by Green and Rivlin [1960] that their general constitutive equation
of the memory type reduces to (2.1) in well-behaved steady flows. Seéondly,
it has already been mentioned above thét the slow flow approximations (2.4),
(2.5), and (2.6) can be derived from the still more general theory of simple
fluids. Lastly, within the framework of the perturbation analysis to be
given below it cén be shown (see the Appendix) that many of the special
theories currently in vogue reduce to the same set of gerrning equations.

The Rivlin-Ericksen theory appears to give an adequate description §f

the stresses in real fluids undergoing slow flows, but it is clearly at odds




with experiment when the same fluids'undergoAcertain other motions.
Therefore, it is desirable to classify the flow yhich the real fluid is
undergoing, This seems preferable to the practice of many authors who try
to classify the fluid according to the constitutive relation., This paper

deals only with Nth order viscoelastic flows. In such flows the stress is

given by the Nth approximafion to (2.1). Hence (2.6) is the stress relation
for a third order viscoelastic flow., The jﬁstification for the assumption
of Nth order flow depénds upon the relative magnitudes of characteristic
times for the flow and the fluid, This is closely analogous to the assump-
tion of isochoric flow of a compressible fluid which is justified when the

characteristic velocity of the flow is small compared to that of the fluid,

3. The Governing Equations

In viscoelastic flow the neglect of inertia does not lead to a linear
problem as in the Newtonian case. However, the form of the slow flow approxi-

mations suggests the existence of velocity and pressure expansions of the

form
V:Vl+'\7'2+'\73+..., ‘ (3.1)
P =Py + P, + Py + oeee 4 (3.2)
The fields —l’Pl are ﬁade to satisfy the linear Stokes equations, and the

higher order fields V},pi (i > 1) then satisfy inhomogeneous Stokes equations.,
Usually a viscoeléstic perturbation parameter, say A (see Caswell and

Schwarz [1962]), is introduced by use of dimensional arguments. In this
analysis it is not necessary to exhibit the perturbation parameter explicitly;

i-l)

however, it is useful to bear in mind that the fields Vi,pi are 0(x




In most boundary value problemé the perturbétion scheme (3.1)-(3.2)
rapidly becomes complicated, and actual calculations ha;e nearly always been
terminated at the third term. The results of such calculations indicate at
most the initial deviation from Newtonian behavior, and are valid for real
materials over a rather narrow range of experimental conditions. However,
the analysis for the wall effect does not require the fields V;,pi to be
solved for in complete detail; hence as many terms as may be needed can be
included in (3.1) and (3.2), Thus the analysis rests on the assumption that
the viscoelastic fluid is undergoing Nth order flow, énd that the regular
expansions (3.1) and (3.2) exist.

The inhomogeneous St;kes equations governing the fields Vi,pi can be

written in the form
0=~V + u V'V, + V1 i=1,2,3 (3.3)
) pl. [o] i i s 3TTacr ¢

where T, is called the inhomogeneous stress tensor. From the stress approxi-

mations (2.4), (2.5) and (2.6) the first few $i can be written down,

=0, L= AP0, a2<ﬁ(l)(;))2 . (3.)
?3 = ali(z)(l,z) + aQ(Z(l)(l).Z(l)(25+i(l)(2)JZ(l)Ql)) +181K(3)(1,1,1)

+ BQ(Z(l)(l)-2(2)(1,1)+i(2)(i;1)-3(1)(1)>

e E PP A, . L (3.5)
The notation Z(l)(i), i(2)(5.5) ete. indicates K(l),»Z(Q) etc. are to be

evaluated with the fields V;, V} and so on.




It is usual in perturbation calculations of this kind to require the
first term in the velocity expansion to satisfy the boundary conditions
exactly. The higher order terms must then vanish on the boundary; however,
the boundary stresses associated with these fields do not vanish. Hence
these terms will generate corrections to the forces and torques acting on

the boundary. Such perturbation schemes will be called force (or ‘torque)

perturbations. In this work the inverse of force perturbations, called

velocity perturbations, will be used throughout.

Let Sl be the surface of a rigid body which moves with velocity
U + Oxr relative to an outer boundary or container whose surface is 32. For
the fluid contained in the region between S

, and 32 the boundary conditions

for velocity perturbations are to be satisfied as follows

V. =0, +%2, x» on S, , V.=0 on S, . (3.8)
1 i 1 1 i 2

The Velocity perturbations ﬁ; and ?% on Sl are determined by force and

torque conditions given by

F=- I ?ldA s L =~ I 'Ex‘fldA . : (3.7a)
’ Sl Sl
and for i > 1 J ’t‘idA = J ?x't‘idA_: 0, - (3.7b)
Sl ’ Sl'

vhere F and T are respectively the force and torque exerted by the fluid

on Sl. The stress vectors ti are given by

T, = - np, + uoﬁ.ﬁ(l)(i) + F.?.-i(i-l,i-z,...,l) , - (3.8)

i




where n is the unit normal directed out of the fluid surface. Since the

—i,pl satisfy the homogeneous Stokes equation, Ei and ﬁi are

- respectively the translational and rotational velocities with which the

fields

particle would move in a Newtonian fluid of viscosity u, when subjected to
a force -F and a torque -L.

When 32 is infinitely far from Sl the velocity contributions in (3.6)
are denoted by ﬁ;i’ 5;1 . The sphere is th§ only case for which some of
these terms are known., From the force and torque formulae of Giesekus [1963]

it is possible to find by inversionQ:

F —

Lk)l = - 6"“ a ] Uw2 = 0 1
O
2
T [942(82*53) (“1+“2) 258 ©1 (L )2 F 5 .o
v = = [ o 2 3 Yool ’
3 175 13 Mo M 143 uo 6nuoa Gnuoa 4
T, = 0(F%) . . | | | : (3.9)
- T _—
ﬂm.l o 8 i Q°°2 =0 4
LT |
- 2 BotBs “1*“2‘2 L 2 T = - 5
- g2 o2 - (0 iy’ T g om0t
} o Bnuoa 8nuoa

(3.10)

The above formulae are valid only for translation induced by a force alone
or rotation induced by a torque alone. When both F#0, T # 0 interaction

terms appear in 3;3 and 5;3. Giesekus has calculated these when T and I are

2 = ol . : . : ‘
Uy, and Qmu are not given, but they can be shown to vanish with the use

of symmetry arguments.




parallel, but his results appear to be in error (Caswell [1967]).
- The calculation of wall effects depends crucially on the behavior of
the fields V;i’ Peoj far from Sl. Brenner [1964a] has shown that the

Newtonian fields have the asymptotic expansions

_— e -2 — = pp F
Voi* Vet o(r °) , Ve = - 1+ . £ s (3.11a)
r 8y _r
(o]
-3 TF
Py Pst o(r ™) , P = - S F3 . (3.11b)
4np

where the origin of the radius vector r is imbedded in the moving body Sl.
The choice of an origin in the moving particle requires the corotational
derivative (2.3) to be written with the velocity relative to that origin,
Hence from (2,2) and (2.3) 5(2) can be expanded as

(1)

PG g%- + (T0-mx-vh L) & K(l)x(%-alﬁd - (%-Elﬁ)xi(l) + GH2 (312
It follows from (3.4), (3.5), (3.11a) and (3.12) that tﬁe ¥wi are O(rua) as

r becomes large. It then also follows from the force condition (3.7b) and

-3

the divergence theorem that for i > 1 V;i s Py can be at most O(r-Q,P )
a r + e«
With the use of (3.11) and (3.12) it can be shown that the inhomo-

geneous stress tensors ?wi may be written as
= 16 PURN-T¢ ) B S Y
Tog = =0l (Ue 140 . xr) e VAT (1) + AT (el)xQ . (=0 . (xA 7 (=1)}

r I, , | (3.13)

LY _ .

where i:i - O(P—u) as r o : ' .(3.1&)

=(1) =(1)

and A" '(wl) implies A is to be evaluated with V; Because of the form

l-

of (3.13) it is useful to construct new fields Ves 0 Py (i > 1) with




a ]
c (@, 48 W, 4T, xT - (@ 4T )
i R R e R T R B A AL L T
(3.15)
These fields satisfy the homogeneous Stokes equation, and when 32 is the

sphere at infinity the corresponding stress fields %Q approach the first

fi
term in (3.13) as r becomes large; Furthermore, V;fi g do not contribute

to the force or torque on Sl. It is the asymptotic properties of the ;:i

which permits the analysis for wall effects to be carried out without the

need for complicated calculations,

4, The Green's Function Solution

The solution of the Stokes equation in terms of a generalized Green's
function was originally worked out by Lorentz [Oseen 1927]., Recently,
Williams [1966] has used this solution in his investigation of the effect of
finite boundaries on the Stokes drag in Newtonian flow. Here these-results
are extended to include Nth order viscoelastic flow.

In an unbounded region the Green's "velocity" tensor and '"pressure"

vector are given respectively by (Oseen [1927])

Q7,7 = IV[rw| - [mF] , (4.1)
?I(;’r’) =< UOV(V2|;_;'I) D (4,2)

where T and r' are the radius vectors of two arbitrary points X and X'

respectively. The gradient symﬁols V and V' denote differentiation with

respect to the components of T and 7' respectively. The fields 61 ’ ?&

satisfy equations of "motion" and "continuity"
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2= o S e = ) =
MV Qp = VPp = - Bmp 16(r-r') , V:Q = 0 (4.3)

respectively, If the flow is confined to the region between a particle Sl

and an outer surface 32 then to Q P._ are added the fields 611(;;;“) ’

I°°1
?&I(;;;‘) which satisfy the homogeneous form of (4.3) and the boundary

condition
Q=0+ Q=0 on SQ . (4.4)

The fields 6 , P so defined are the Green's functions which deliver the
solution of the Stokes equation (3,3) at points in the interior of 32. As
with the scalar Green's functions of potential theory Q satisfies a

reciprocity relation when r and r' are interchanged (Villat [1943])
AT, = Q'L , , C (.5)

where + denqtes the transpose. By inspection it can be seen that 61
satisfies (4.5), and hence the reciprocity relation is, in fact, a condition
to be imposed on SII‘ It is 91ear from (4.1);'(u.é) and (4,4) .that SII is
determined solely by the natufe of the surface SQ, apd is regular everywhere
within the region enclosed by it, including the volume occgpied by Sl.

If the inhomogéneous.part of (3.3) is regarded‘as a body force then
the velocity V} at a fieidApoint X' can be written.direqfly from Oseén's

[(1927] work as

-— [ — avi = ... . 35 .
8npoVi(X') = | {(—pin+uo SE—Q‘Q - Vi°(—n P+uo 5;)} dA
Sl+32
1 = = . . ‘ '
+ (V'Ti)‘Q dv , , ‘ ' . (u:6)
v . |

where n is the unit normal directed out of the fluid surface, and X is now
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a variable point in the region between Sl and 32. With the identity
(V-i.)~5 = Ve(T.Q) - 1.:VQ , (4.7)

the divergence theorem, and the boundary conditions for V} and 5 on 32 , the

solution (4,6) can be put into the form

— -l T e — 36 = = )
. t = ¢ (N *{ - o - . H
gmu V. (X') [ {t;-Q yi (-n Pty an)}dA J -Ti.VQ av . (4.8)
Sl . v
Here iz and ?: are defined by
= _ =% = = = o2 (1) O N A ¢ §)
T, o= Ty - oo L0040 e VATTI(L) 4 ATTT(L)xR, ) - Ry o xATTT(1) ), (B.9a)

o
v —

T T

where ¥%i is the stress vector calculated from the fields Ves s Pgy (3.15).

Whenever V;,is a rigid ﬁotion on Sl the second term in the éurface integral
can be shown to vanish with the use 6f the divergence theorem and the
properties of SI and SII'

By arguments entirely.analogous to those used to arrive at (4.8) it can

' s s e ss . 3
be shown that the corresponding pressure field is given by

3

unpi(X') = I V¢'¥i dA - I T,

L1774y + uniz:i/s . (4.10)

S’ v

where ¢(T,r') is the scalar Green's function for Laplace's equation

given by

¢ = 6pt 6p > ¢y = V[T, (4.11)

3 —
In (4,10) V has been taken as a rigid motion on Sl.
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and ¢II is a regular solution of Laplace's equatioh which satisfies the

boundary condition

V¢II=-V¢I on 32 . (4.12)

As with Qrp » 911 is determined solely by the properties of 32.
When 32 recedes to infinity it is denoted by S_, and 6 then reduces
to 61. If the field point X' is restricted to lie on Sl then, because of

the boundary conditions, (4.8) reduces to the following set of integral

equations which express the boundary value problem for the fields V;i’ Pos ¢
Brn (U, +0,xr) = I T QuaA (4,13)
sl

and for 1 > 1

=t = = = -3
J tmileqA - I T»yVQId" + 00 ") , (m.,14)
Sl v

where £ is the characteristic dimension of'32. For reasons soon to become

U _.+0 . xr)’
anuo(le+ mlxr)

apparent the volume integral in (4.14) has been evaluated over the finite
volume V enclosed by 32 rather than the whole exterior Vv . The error-

introduced by the neglect of the integral over v_-v is estimated from the

far field behavior of ?;i as given by (3.14).'

In the case of 32 located at a finite distance from S Williams [1966]

1

expands GII in a Taylor's series about some origin o in Sl.

= = =0 =0 -3 '
= 14 O '0 ' L
QII 11 +r VQII + r'.V QII + 0(g .) s (4,15)

where the superscipt © implies the quantities are evaluated at the origin'o.

=0
From the reciprocity relation (4.5) it follows that QII is symmetric, and

zo =0 : =0 =0
that V'QII is equal to VQI; + It will be seen below that Qs VQpp» etc.
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must be 0(2-1,2-2

, etc.) on dimensional grounds. Williams noted that VS;I
vanishes whenever the origin is located at a point through which may be

drawn three perpendicular axes of symmetry of 32. With the restriction to
symmetric boundaries of this kind it is found from (4,15) and from the boundary

and force conditions (3.6) and (3.7a) that (4.8) reduces to the set of

integral equations:
gry (U 470, x7) + T°0. T..Q.dA -3
mu (U 40 x0) + FeQpp = t,0QdA + o(e ™), (4.16)
S
and for i > 1

== = =0 —_ = = - =
BHuO(Ui+Qin) - QII. I t_,dA = J t,*Q.dA - J Ti:VQIdu
Sl , Sl v
+0(87%) , ' - (4,17)

A comparison of (4.16) and (4.17) with (4.13) and (4.14) shows that the

fields Vis P; satisfy, to 0(2-3),the same boundary value problem as the

fields Vwi, Puj provided

— - — =0 -3 - -3
le Ul + F-QII/Bnu + 0(2 ), le = Ql + 0(2 V), (u.ls)
. — e -3 -3
and for i > 1 Ueoi = Ui + 0(2 7)), 0, =Q, +0(2 7)., - (4.19)
The integral of ¥%i over S, in (4.17) vanishes because fo 0(2™>) %}i is

iven by Tt .. (see the remarks following (3.15)). The sum of the U,, %,
24 y wfi ) . 1 1

and the ﬁ;i’ ﬁ;i respectively yields (1.1), which relates the velocity U, @

of Sl in a bounded region with its veiocity ﬁ;, Q, _in an unbounded region,
the force and torque being identical in each cése. In order to obtain (1.1)

it is necessary to note that the wall effect tensor k is related to 611 by

‘ , kK = - 3z8°II/u . - (4.20)
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The symmetry of E, which folloﬁ; directly from (4,5) has previously
been established by Brenner [1964al using a different approach. Values of
some of the components of k for certain geometries are given in Happel and

Brenner [1965].

5. Asymmetric Configurations

The configurations of Sl and SQ-for which the terms 0(2-2) in (4,15)
do not vanish will now be considered. The boundary value problem generated
=0
by substituting (4.15), including terms in_VQII, into (4.8) cannot be

satisfied to 0(273) by the fields V;i’ P

o alone.  The integral equation for
i

the Newtonian fields ys Py are found to be-
(T, 60, +(T. -6, )5 - T +8} T..Q.dA -3
gru_ {T) -60,+(R, -60, )xr - ¥ -5} = t)+QaA + 0(277) E (5.1)
3y
wheére
— —_— =0 l__v=o 1 (_____ )V— A .
8mu 8U) = = FeQpp - 5 LeVXQpy + 3 T rotr ty 1V dn (5.22)
Sy
. =0 < ' '
691 = =Ux QII-F/lGTruo s | (5.2b)
3 (vo. + Tvoo.).T/16 . (5.2¢)
S = - (VQpp + VQpp)eF/iomu, . e

©1? Pey and the

The solution of (5.1) can be written as the superposition of

perturbation field le, Pey required to satisfy motion in an unbounded shear

field., These fields satisfy the boundary conditions:

- - — — a o -

- _ . 3

Va1 Va Uit Qa1 %T s Upy T %X respectively on Sl , (5.3)
— _n = '

and le =0, V,* reS on S_ (5.4)
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where S is a symmetric constant tensor such that S:1 = 0, The force and

torque on Sl are given by

'f=-j?mldA, f=-f'5"?mldf" (5.5)
Sl Sl
from which it follows that
_n —_ = - 1" -
Vo * TS+ o(r 2) N o(r 3) as pr > e, (5.6)

From (4.8), (5.3), (5.4), and (5.6) the integral equations which

express the boundary value problem for these fields are found from (4.8) to

be
- — . | — =
8nu°(le + le X ro) = I twl.QI dA , (5.7)
31
—n_n  _ = - - = _ = — aQI .
B (U #y ¥2) = I Tyt QdA + J [t rQpr S (-n Pru, 52=)Jak - (5.8)
S S
1 - o

where ?; = 2u §-5'. A uniform shear field ?;vé is defined everywhere within

Sw s and hence from (4.8) it can be formally expressed as

= = . = — aa .
81”10;;'8 = I [-{-S.QI-rO..S.(-n PI+uO "a'IT:'!:')JdA . (5.10)

From (5.10) it follows that to 0(£-3) (5.1) is the superposition of (5,7)

and (5.8) with

U -60, =0 . +0, , @ - 69, =0 +0._. (5.11)

Brenner [1964c] has given a general analysis of the motion of particles

in shear fields of Newtonian fluids, and from his results it can be shown that




0., I IR T S A I (5.12)
'":l = - (x=<-6:-1=< et .(EO_E:.ES-‘-.?O):E , (5.123)
uy = = (B,C, kheht @ ke, (5.14)
q,, = - (R-C §‘1-6:>‘1 -(io-éo-i'l- go):§ . (5.15)

The dyadics E, éo and io are respectively the resistance, coupling and
rotation dyadics which, for a Newtonian fluid, determine the force and
torque on a rigid body undergoing translation and rotation in an unbounded
region. The shear force triadic %0 and the shear torque triadic go
determine the additional force and torque due to a shear field. The sub-
script o denotes polyadics which are origin dependent, and formulae for
transforming these quantities to a new origin can be found in Brenner's
papers [l96u4a, 196uc]. ”

To determine the velocity correction 6ﬁi the integral in (5,2a) must

be evaluated. From (5.9) and with the use of Brenner's [1964c] formalism

it is easily shown that

L[ TT4STIA=T -5 = -2y |
§-I (tyr tr t,)dA = Uy 0 + @ 0 + o(e 7). (5.16)
S

Since VS;I is 00272) (5.16) is sufficiently accurate for use in (5.1).:
Because (5.1) involves only the Newtunian term it can be compared to

some known resulté. Previous analyses by Brenner [1962,1964a] and by

Williams [1966] have dealt with freely falling (L = 6) particles. Neither

_.2)

of these authors has obtained explicit expressions for the terms of 0(%
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but rather have attempted to find symmetry criteria for the validity of the
error estimate of (4,16). When the origin is the center of mass of a freély
falling particle the following equation is obtained from (5.1), (5.2), and

(5.11) to (5.16)

Ui = U;l + (Fekt + BoxF)/6mp 2% + 0(27°) , (5.17)
- :'_. = = .=_l.=T 1 & = .=—l = g __ 2
2 =9, + [w F-(Ro C K ™eC ) T (oo-co K ﬁ)) de F]/Snu 27+ o(e” ),(5.18)

where o = g:A° s € is the alternating tensor, and

A° = (K-CT+R 671 (o -ct

W Hi
Q ]
[aVR1l}

.t.
o o (<) o o o o)' (5.19a)
= 3 2 H 3 ,2,.7° t =0
W o= == VxQ » d= -2 (VQII + VQII) . (5.19Db)

o -0 .
It should be noted that A , and hence B , depends on the geometries of both
Sl and 32 while the second order wall-cffect tensors w and d depend only on

the shape of 32. If the container is taken to have any afbitrary shape then

the condition on the particle geometry for (5.19a) to vanish is

=0, A | . (5.20)

© 1N
!
on
xu
qm

t
oo o
where the origin dependent poladics are peferred to thé center of mass.,

From the transformatién formulae of Brenner [196u4c] it can be shown that in
general it is not possible to find an origin for which (5.20) will always

hold. Hence even wifh the adjustment éf the mass distribution Ep cannot in
general be made to vanish. For highly symmetric bodies (5.20)'may be satisfied

with the origin at the center of symmetry. In’pafticular, when Sl has three

= 0 (Brenner [1964c]), and hence

on

mutually orthogonal symmetry planes Eb =C
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(5.17) reduces to (4.18) which is in accord with Williams [1966]. Another
class of bodies for which (5.20) is satisfied is that possessing helicoidal

= 0,

Qqm

isotropy in which case %}= o
In his first paper on wall effects Brenner [1962] derived the one-

dimensional form of (4,18)., He asserted that the error is 0(2_3) provided

the particle possesses three orthogonal symmetry planes, and moves with one

of its principle axes parallel to a principlé axié of the outer boundary,.

Later (Happel and Brenﬁer [1965], p.291) the restrictions on the particle

geometry were removed, and it was asserted that an origin always exists for

whiﬁh the error is 0(2-3). This assertion is at odds with (5.17) as will be

seen below where the case of an axisymmetric particle moving near a plane

wall will be considered. Part of the difficulty of Brenner's assertion is

that he does not define precisely the concept of a principle axis of the outer

boundary. For the motion of a sphere a principle axis of S could be defined

2

as one for which ;-?'vanishes; however, this definition will not work for
particles with a lower degree of symmetry, Even if:the term 0(1_2) vanishes
in ﬁi, the corresponding term in ﬁl will in general not vanish. The motion
of a sphere near a plane wall is the notable exception to this rﬁle.

For the non-Newtonian fields V&, Ps» i > 1, it follows from (3,6),

(3.7) and (u4.8) that to 0(2—3) the boundary value problem will take the form

—_ e o wm! - =% = -3
8ﬂuo(Ui—6Ui+QiXPO) = l ti QIdA - I Ti.VQIdU + 002 7)), (5.21)
1 v .
- . =% =0
where 8nu06Ui = {J ti.rodA - J TidU }:VQII . (5.22)

Sl v

The solution of (5.21) can be expressed, as in the case i=l, as the super-

n "
position of V;i, Poj and the perburbation fields Vmi’ Pey» which account for
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motion in a shear field. Since S as given by (5.2¢) is 0(2-2) only the terms
linear in this quantity are required for the solution of (5.21). The
‘boundary conditions satisfied by these fields are rigid motion on S. as in

1
(5.3), and

=V.=0 on S_. (5.23)

Because the force and tofque are given by V;l, Pay the higher order fields

must also satisfy

— It — — —_n
0= [ t_.dA = J t_.dA = I rxt_.dA = [ rxt_.dA . (5.2u)
1 Sy Sy S
— M — n
These force and torque conditions determine Umi’ Umi’ Qwi and i

The only case for which any of these fields are known is the sphere,
The author'u has calculated these fields for i=2 when the sphere is subiected
simultaneously to a force and torque in any orientation. The velocity

contributions are found to be:

— - %¥%  F.S -
Uw2 =0, U°°2 z - ( > ) T (5.25)
o o
- = 0t TS .
(%) =0 ] Qw2 = - ( U ) 3 . (5026)
o 87y a )
o
. . _n _n
With the use of symmetry arguments it can be shown that Um3 . Qw3 have no
=. — t — M . :
terms linear in S, Hence for the sphere ne t V2w and Vam + VSm satisfy

(5.21) to 0(8~%) provided

4 These calculations will be published in a forthcoming paper on particle

motion in shear fields.




20

a,ta = o 4o, =— =
- = 1l 2 F*S - 1l 2, LS
U2_6U2 =~ ( v ) T 92 - ( T ) T s (5.27)
o o o 81y a
o
U3-<SU3 = U3m s 93 = st . (5.28)

The evaluation of the integral (5.22) is greatly simplified with the
use of a generalization of a reciprocal theorem of Lorentz (Oseen ‘[19271).
For any two solutions V;, P and Vg, pj of the inhomogeneous Stokes equations
(3.3) the divergence theorem yields the following reciprocal relation

l {Tj:VVi-ri:VVj}dV = I {tj-Vifti-vj}dA R (5.29)
3 A
where S is the entire boundary of the volume V., When S consists of Sl and
- = _TO - ' '
32, and Vl = ro'VQII-C, where C is an arbitrary constant vector, the

reciprocal theorem together with (4.9) give5

-

0 - =0 N =0 . =0 + _=o ’

J jdV -I tijdA 1VQ; ¢ _:J {t.r :vQ —-rojn.(VQII+ VQII)]dA , (5.30)
Sl S°°

where the error involved in the replacement of 32 by Sm is 0(2-3).

The integral (5.30) can be evaluated to O(Qfa) with the V;j, pws

fields alone. For the sphere it can be éhown_from Giesekus [1963] that

7;2, P, have the asymptotic éxpan;iqns ‘
(a+a,) , 272 o == = -
-— “FoeVe . r -3
V= —= 2{(aerLLV)'(-l-+-’3)}+o(r ), (5.31)
2= 2.3 v r 3 :
, l?nuoa 8nu° r

5The notation used above makes use of the clustering convention whereby
- - - - - - =0 . .
(ab):(cd) = (a*d)(bec). Also +VQII denotes the pre-transpose in which the

.first two indices are interchanged.
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i (al+a

) 2w == ~
P, 2_({aFrv-1LY) 354 + o™y . (5.32)

12my a3 4 r
o ‘

From these expansions the necessary integrals for use in (5.30) are calculated
as

o ((X +a )

/ I T r dA = —— [ (8FF-F1)-(31L-1°1)] (5.33)
3 60nuoa

(al+a2)

-4
o [T - s
S, Yo

2(3FF-F1)-(3l1-121)] . (5.34)

The fields 7;3, P,y are O(r-3,r-u), and so their integrals equivalent to

(5.33) and (5.34) vanish., Higher order V;i, P,; are not available.

i

For the sphere all the resistance polyadics in (5.12) to (5.14) are

zero except K and Ro which are 6ral and 8na3i respectively. From (5,2),

(5.11), (5.19b), (5.21), (5.27) and (5.28) the velocity contributions U}, Q

can be added to give

3

= _ = aw= = na°> = g %% o= g 5 1w = :
U= 0 = g Uk - 37 i Wy tde Uy #g @70, By - 50,0y )24
0(e™3,0720" 0”2t L), (5.35)
_ _ = _ a+a = E_. . _ n .- . . .
R=0 - 0T - (2 0 a.0 + o2 2,027 0%t ), (5.36)
0”7 W e MRROVILC R T

where U;l’ ﬁ;l’ given by (3.9) andx(S.lO), are the velocities the sphere
would attain in an unbounded Newtqniah fluid of viscosity vy under the
influence of the force F and torqué L. The error estimates in' (5.35) and
(5.36) contain terms in 2 since fér i > 3 the non-Newtonian fields are not
available. lHowever since these fefﬁs are modified by fourfh order products

of F and L these equations are valid in the limit of small forces and torques.

1
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In experiments with freely falling particles this requirement is easily met
by the use of small spheres which is also necessary to satisfy the condition
for inertialess flow. Thus these formulae should be useful in falling sphere

viscometry.

6. On the Quasi-Steady Approximation

In the preceding analysis all motions have been assumed to be steédy.
Obviously when a body moves in the vicinity of a wall the fluid motion cannot
be steady in the strict sense except in certain special cases. For Newtonian
fluids it can be shown with dimensional arguﬁents that Stokes equation
remains valid provided the local and convected accelerations remain finite in
the zero Reynolds number limit. In slow viscoelastic flow it is necessary to
examine, in addition to the local acceleration, the partial time derivatives
in the constitutive equétion. 'Because of such terms the conéept of quasi-
steédy flow appears to be more restrictive than in the Newtonian case. Hence
the analysis-is restricted to the situation described below.

It is supposed that in an uﬁbounded medium the body Sl can undergo
strictly steady motion under the influence of a constant force f;and torque
f-s This steady motion is disturbed by the approach of the body to a wall 32
at a distance 4, The speed of approach is i, and hence a characteristic
approached tiﬁe is 2/5. The dimensional analysis referred to above then shows
the local acce}eration to be 0(%-Re), where a is the particle dimension upon
which Re is based. Since the wall effect analysis requires (a/%)<<1, it is

clear the local acceleration can le safely neglected in the zero Reynolds

6 For bodies of complex geometry such motions may not exist (cf. Brenner
[196u4b]).
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number limit. Therefore, the governing equations remain the inhomogeneous
. -

Stokes equations (3.3). However, the inhomogeneous stress tensors T, now

differ from their steady state values by certain partial time derivative

=1

terms. For instance, T, includes the term a aR(l)(l)/at; thus the governing

1
ot t
equation for the time dependent fields Vos Py is
2. |
- P a\72vl -
0 == Vp, + VWV, +a = t Ver, (6.1)

where T, is that part of (3.4) which does not contain partial time derivatives.
]

Since Vl satisfies the homogeneous Stokes equation it varies with time only
through the velocity boundary values on Sl’ A solution to (6.1) which

satisfies the force and torque condition (3,7) is given by

. _ . _ oy BVl '
Vl=Vl,V2=V2-—-T,p?‘p2, (6.2)
o

where the unprimed fields satisfy the steady flow equaticns. On S, V,_ is

1 2
given by
e o . ‘
v2-ug-u2-—;-ul. (6.3)

The acceleration Ui is obtained by time differentiation of (4,18) which

results in7

The force of the fluid on the particle (3.7a) has been taken as a constant
in balance with the applied external force, such as that due to gravity.
In an unsteady motion this cannot hold exactly. An estimate of the particle
acceleration is furnished by (6.4), and from the particle equation of motion
it can be shown that the ratio {mass)(acceleration)/(fluid drag force) is

o .
0(Re E§-§§J. Here Pq is the mass density of the solid. A similar argument

L ' .

can be used to justify the torque balance.,




ocl|
=1

o . 9 .
U = - —— . (60"“)
1 6nu° 22 »

* — -t
Thus whenever 1 is o(u) U2 must be replaced by U2. The partial time
=1

derivatives in the TS for i > 2 contribute to the ﬁ; only terms 0(2-3),

and to the same order all the 5} are unaffected, Hence when all the

o ot .
contributions Ui’ Qi are added the actual velocities U , 2 can be expressed

as
- YT g - - -
T =T+ 2 2 h 007, T =0+00™ (6.5)
o ﬂuo 22

where U,  are the velocities calculated from the steadj_state equations
which for the sphere are summarized by (5.,35) and (5.36). When the particle
arrives near the wall the above analysis may become invalid, not only because
of the neglected terms 0(2-3) in (6.5), but more importantly because the
stress will not necessarily be accurately described by the Rivlin-Ericksen
theory., The velocity correction in (6.5) shoﬁld bé regarded as a zeroth‘

order account of stress relaxation,

7. Examples of Wall Effects

a. The Plane
The volume v is the half space on one side of the plane whose unit
normal vector, i, is directed into the fluid. For this case 611 is known

exactly, and can be written as (Oseen [1927] p. 114)

QII(?,F') = UWR - 1V°R - 25" Iv(1/R) + v(1/R)T - 21ii.v(1/R)
- FI(VA/R) - 2Tevv(i/RD) ' | (7.1)

where R = |r-r'+21 r.1] , - - (7.2)
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and the origin of r and ' lies in the plane. The origin for the Taylor's
expansion (4,15) lies at a distance & from the plane, and from (7.1) this

' series gives

E;I = - T;,‘[L-i-{] s VS;I -—[111 - 11 4+ '{i + (iE)'r] . (7.3)

-l w

2

Hence the wall-effect tensors (4.20) and (5.37) are

[111 - 11 + 11 + (ii) 1. (7.4)

l+11] -;

1
(a1}
1"

1

=1
l—-lco

0,

When terms of 0(1—3) are neglected the appropriate value of £ in (6,5)
is ﬁ;-i: When the above values for k and d are substituted in (5.35) and
(5.36) the instantaneous velocity of a sphere can be expressed as

a

= 9a 1 . ~a l %2002 1T
T = T, - 2-u, 1+ S TUDIEEDD + g 250l (1(E D sT-2gg-1)
o L o)
3 ata . - -3 - '
P a1 202 (TETDZ-Te2he1h] + 008 5 2728, 274, L), (7.5)
L 2%y w]
L o i '
P | -—  Ya 1l L\;y AN FregPE v w T - RSt
g =0 + 2 _¢ 2%y g [1(h°lg i-heg)+h-ig-g-ih]
®ap? w1l

+o(z‘3, L“QF“, 2"2L”,...) , (7.6)

where g and h are unit vectors in the direction of U;l and ﬁ;l (i.e, -F and

-T) respectively. Several special cases of (7.6) best illustrate the nature

. -2
of the non-Newtonian terms of 0(% 7):

i) Free fall with the force parallel to the plane

= — 9 a . = _ 727 a
U, =elU (P -g7Ual V=1 ;5( "

Hrey o0
w2, . @

o
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ii) Free fall with the force normal to the plane

(o3 o o
— - - 9 a 1 9 a (%1%%, 2 —
0, =0,0 = U -2330 3_-——1102 u_(F)) +u —-—22{ ™ JZ1,8=0,

(7.8)
where ﬁ)l and ﬁl are respectively the components of velocity parallel and
perpendicular to the plane., In (7.8) the upper signs hold when the force is
~directed away from the wall and the lower signs when it is directed towards

it.

iii) Rotation about a stationary axis parallel to the plane.

q
= = = - 3 2 =
L LI = e e
Q @ (L) , U 0, F 5 —5( A A LI (7.9)
iv) Rotation about a stationary axis perpendicular to the plane.
=0 ,0"=0, F=3n -—(al+a2)$2 . (7.10)

2
In (7.9) and (7.10) the sphere is constrained not to translate. The force
F, calculated from (7.5) with:TU' = 0, is that exerted by the fluid on the
sphere, and hence a force -F must be supplied to maintain the constraint.
The normal stress coefficient o, is negative (Truesdell and Noll [1965]) on

1l

theoretical grounds, and for polymer solutions o.+a, is found to be positive.

172
Hence when the force and torque vectors ére parallel to.the plane the wall
effect produced by the normal stresses is to propel a freely translating sphere
(7.7) awéy from the wall and to draw towards it a rotating sphere (7.9).
When the force.and torque vectors are normal to the plane the wall effects
are more complicated, The normal stress terms tend to increase or decrease
the velocity (7.8) of a freely tfahslating sphere depending on whether it

leaves or approaches the wall. For the rotating sphere the effect is to push

the sphere away from the wall.
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While (5.35) and (5.36) are valid only for spheres, (5.17) and (5.18)
are valid for any geometry provided the fluid is taken to be Newtonian. As
a specific example the free fall of an agisymmet;ic body in the vicinity of
a plane wall will be studied. The necessary resistance polyadics are given

in Brenner's papers as:

= K33 + K,(-33) , R =R 3+ R(1-55) , (7.11)

o]

R TITe 4 roIaoTyt = -3 23yt
¢= 3ije + [13+(13) Je, , o = (g3 + (x5)1 o, (7.12)

where 3 is a unit vector parallel to the symmetry axis, and the subscript ¢
indicates the origin dependent polyadics aré'refefred to the center of
hydrodynamic stress where they take on their simplest form. In free fall the
origin in (5.18) and (5.19) is of necessity the center of mass which is
assumed to lie on the axis of symmetry. With the transformation formulae of

Brenner it can be shown that the quantities R -C xtoct , 6 ~C Kt .
o o o o o (S

and EléooK-l?F are not origin dependent. This also follows directly from’
(5.14)and (5.15) since these quantities specify the angular velocity. From
(5.17), (5.18), (5.19), (7.3) and ﬁrenner's transformation formulae the
velocity of an axisymmetric body near a plane wall in a Newtonién fluid is

calculated as

= _ 3 rE.ThLT
U-U1+W[F+1Fl]+

1 ©
et T Th\2 <I):L 1 1 o 4)2 20
2[iF'j—jF'iJ{(l-(j'i) M= + 24 (= - + 2 %—) + b=+ -‘2’-(1 - =N}
Bumy 2 1 2 1 2 2 2

+0(e7%) s (7.13)




q - __..%_‘L_.é. [DFTITERED + TR+ 070, (7.14)
32R2nu02 '

where p is the distance from the center ;f h&drodynamic stress to the center
of mass. The terms of 0(2-2) in (7.13) and (7.14) assume their greatest
values when thé force F is parallel to the wall. In fact when F, T and J
. are parallel these terms vanish entirely. Two limiting cases will be
considered when the force is parallel fo the.plane.

The first is Bretherton's [1962] ovoid §f revolution which in polar

coordinates is given by (Figure 1)

r = all + sP3(pos 8)] , (7.15)

where ¢ is a small parameter, and 3 is directed towards the "pointed" end.
It is shown by Brenner [196uc] that for the ovoid the components of the

resistance polyadics in (7,13) and (7.14) are

) )
E£-= §-ea + 0(82) s 2= i-sa + 0(52) s (7.16)
7 7 ‘
1 2 ,
o~0(e2), i <o0e?, 0~ o0Ce) . (7.17)
K K, , .

Hence from (7.16) and (7.17) it follows that to 0(62) the ovoid will trans-
late without rotation. The component of velocity parallel to the wall will
be given correctly to 0(£-3) by (l.la); however, (7,13) gives a velocity

component perpendicular to the plane

- 3 —_—
U_L = Tm £a 2 F‘] . (7018)
npoz ’

Thus the ovoid will move respectively toward or away from the wall depending

on whether it moves with the pointed or blunt end first (see Figure 1).
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For a body with fore-and-aft symmetry with its center of mass located
at the center of symmetry the term of 0(2-2) in (7.13) is identically zero,
The rotational motion is given by (7.14), and if J and F are coplanar as

shown in Figure -2a this reduces to

- 30F

Q) Z ——— [SinQE;..cos2E].}_<_ s (7'19)
1 2
: 32R2ﬂu°2

where X is a unit vector directed out of the plane of the paper and cos £ =

I3 (see Figure 2a). When j and F are perpendicular (7.14) reduces to

“ﬁl - - 30F COSQG T(' . (7.20)
~32R2nu°2

where cos 8 = i+3 and k is directed out of the plane of the paper. Egs. (7.19) and (7. 20)
are sufficient to determine the pdssible ultimate orientations of a body

with fore-and-aft symmetry. The inner prdduct of fﬁand (7.14) easily yields‘
the conditions for no rotation about an axis’ parallel to F to be either

kX*I = 0 or F*J = 0. Equations (7,138) and (7.20) then respectively give the
conditions for no rotation as £ = +45° or +135° and 6 = 90°.

For the circular disk o/R2 is -.%-, and from (7.18) it can be seen
that when kI = 0 it will rotate resbectively~clockwise or counterclockwise
depending on whether 135° > £ > u45° or 45° > £ > -450, All angles are
included since (7.14) is invariant to reflections of j. Thus the ultimate
motion of the disk is translation with its plane at 45° to the wall, and
because of this orientation the first two terms of (7.13’ yiéld components of

velocity directed away from the wall, If j and T are perpendicular and

0 = w/2 then the disk moves without rotation parallel fo the wall.,
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b. The Cylinder

The cylinder is of general experimental interest because of its use
in falling sphere viscometry. In this connection several authors (Tanner
{1964], Wilson [1965]) have observed a marked tendency for spheres to migrate
radially when they are launched along the centerline of a vertical tube. It
is known from the Stokes flow analysis of Brenner and Happel [1958] that a
;phere moving eccentrically in a tube experiences no sidewise force when the
fluid is Newtonian., To extend their results to other geomepries or to non-
Newtonian fluids it is necessary only to insert the values of S;I and VBII
for the cylinder into the appropriate equations of section 5.

Cartesian coordinates X, 3X,s%, are chosen with origin O

3

located relative to the center of cylindrical symmetry S by the constant
vector b, as shown in Figure 3. Relative to 0 the X =%, and Xy=Xg planes are
orthogonal planes of symmetry, and by conventional symmetry arguments the

=0 . =0
non-zero components of QII and VQII are

[o] [+ [o)
rm1 0 Q22 0 Yrss o (7.21a)
o o - o o ) °
90131 » 0101 2 23131 » %9%112 0 %122 2 %3%mas 0 Qa3
(7.21b)

The equation of continuity requires the sum of the first three terms in
=0 . ) .
(7.21b) to vanish, and hence QII has at ‘most five independent components.
At the present time 611(;;;') is not known for the cylinders. Hence

the components listed in (7.21) cannot be obtained by direct expansion of

Professor Brenner informs me that he and his students have obtained 6
for the cylinder, and are presently evaluating some of its components,
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Q

11 as was &one for the plane wall, Instead some of these components will
be back-calculated from certain results of the Newtonian analysis. Thus it
will be necessary to consider two Taylor expansions, the first valid near the
§enterline and the second valid near the cylinder wall. Three orthogonal
planes of symmetry intersect at S, the center of the cylinder, and consequently

all the components of-Vail are zero. Thus the expansion (4,15) relative to S

is reduced to

5 =05 Lo OV0S 4mt e UVIOS 4omt: OYIES 4130, grpraS 4
Qpp = Qpp + F{rraVVQ+r e VVIQ4rr! 1 VVIQ 42" :VIVIQ ) + O(r ) o (7.22)

The equation of continuity imposes the restrictions

vv~6§1 =0, v'v-éiI + v'v-6§I =0, (7.23)

and the reciprocity relation (4.5) requires

2st _ yoeoS 128 - grgast .
VWQpp = V'V'Q I, WV'Q = VIVQ . . (7.24)

An expansion valid near the centerline is obtained by the transforma-
— —t
tion of the origin in (7.22) from § to 0. The radius vectors r. and r_ are

related to r and r' respectively by

— — - — — ! .
= t =
r=D> + r o, T b.f v, (7.25)

’ ’ — i |
The substitution-of (7.25) into (7.22) results in a series in r and r of

the form of (4,15) with

0 _=s 1 == oonst, oonS Lo1onS Lot =5 4 TN
Qp = Qg + 7 bb:(VVQ+VVQ 47! VQ (+9'VQ 1) + 0(b)) - (7.26)
=0 T, uusS 1= orons soruast 3

VQpy = beWVQ; + 5 b (V'VvQL#9'9Q 1) + 0(b ) . (7.27)
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Thus the leading terms in the centerline expansion~are determined by 8?1 s
Vvail and V'Va§I « The leading terms in the expansion near the cylinder .
wall are deduced from the known values for the plane'wall since the former
approaches the latter as the radius R becomes large. When in (7.3) % and 1
are replaced by R-b and —Ei respectively, and the results aré expressed aé

the coefficients of a series in powers of R"l then the wall effect, tensors

‘become

[l+1lli] 1 )—l
1-b/R ’

2

ey

K
T o+ o¢

= ,.d l

=

_ 9 [i 1lll-lll+1ll+(11 ). ] , 2
3 (1-b/R)? olimzm - (7.28)

o.m
!

-+

This procedure for arriving at the limiting forms of the wall—effect tensors
is justified, at least in part, by the analysis of Brenner and Happel [1958]
who proved that (7.28) holds rigorously for one of the components of ;.

In order to identify some of the components in (7.26) and (7.27) ﬁhe
translation of a sphere of‘radius a in a’Newtonién flﬁid under the influence
of a force -FE3 is considered. From (3.9), (3,10), (5.17), (5.18), (5.19)

and (7.21) its velocity and constraint torque can be evaluated respectively

as '
SR . 3
Ul = 6ﬂu - (1-kg R)13 to(x) Lo (7.29)
2 | é 2 . N a 3
L =-8ma w23(-R-) AU P °(§) s (7.30)
where T is arrived at with'ﬁi = 0 in (5.,18)., From tﬁe Brenner-Happel results
for this problem it is possible to identify k33 and W,y @S -
kyg = £(b/R) ,  wy4 = g(b/R) . - (7.31)
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The function f is tabulated in Happel and Brenner [1865] for the whole

range of its argument. For small values of the grgument £ and g have the

expansions
f(b/R) = 2.10uLy - 0.6977(b/R)2 + O(b/R)u s (7.32a)
g(b/R) = 1,296 b/R + o(b/R)® . (7.32b)

For values of b/R near unity both f and g are in accord with (7.28), The

=0

33-component of QII can be written from (7.26) as

o

- S 2 S s - y ' .
Q1733 = Qqras * P (%13)Qppgat31 3150 tob ) (7.33)

It then follows directly from (u4.20), (7.31}, (7.32a) and (7.33) that

Q5. .. = -2.10u4(4/3R) , 9

’ 3
1133 = = 0,6977(4/3R%) . (7.34)

s s
1°1% 133212 %133
Likewise from (7,27) and (7.34) it follows that 31Q1133 is given by

d Qo = b(3,3.05 . +5.2.Q5 ) + o(bs) =0 6977(5-§L0 +0(b3) (7.35)
1°I133 1°1°1133 “1°1-1133 * 3 .3 e

R

According to their definitions (5.19b) W,y and d. . . can be expressed

in terms of alelss and 33Q;I13 by
Vo3 = 3%3 (319;133‘33Q;113) » 313 = - 2%3 (340111572, 0ppa3) +(7.36)
The component d313 is conveniently eXpressibie as
dgpg = h(b/R) , (7.37)

where the function h(x) has limiting values given by
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h(x)

M

0.598x + 0(x°) as x>0 , (7.38a)

(l-x)Qh(x)

g9/32 as x->1. (7.38b)

The expression for small x is deduced from (7.31), (7.32), (7.35) and for x
near unity from (7.28). With these limiting values it is possible to
construct a provisional plot for h(x) for the whole range of x similar to the
one for g(x) constructed by Happel and Brenner [1965] from similar limiting
values.,

The components k33 s Wog s d313 are of interest to the purely Newtonian
theory since with them it is possible to study the motion of particles of complex
geometry, For instance, in-én unbounded medium a uniform circular disk in
free fall has no preferred orientation (see Happel and Brenner [1965]).
However, af sufficiently low Reyndlds numbers a disk falling near the axis of
a cylinder will adopt the edgewise orientation. This phenomenon is readily
explained by equation (5.18). Let 35 be a unit vector directed along the
axis of the disk, and let ﬁl and ?é be orthogonal unit vectors in

its plane. The angular velocity is then given by an expression similar to

(7.14) as

) = Ligupa=dnfl (35015003 +1y )43, 1) (3401 My, 4

< ~ k3 ky 3 T 3 ) 3 . . ) F
+ 3004100, 1+(5 71005, 1)}, ) 5 - (7.39)
. 6m R
: o
The simplest case of interest occurs when j2 = 12 , and then (7.39) reduces to
-3 2 .2 F :
0, = 12[g(b/R) + h(b/R)(cos"g~-sin 5)]~———-—§ s (7.40)

BﬂuoR
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where 33-31 z - 31-23 = cos § , §3°13 = 31-21 = sin £ , and £ is the angle
depicted in Figure 2a. From the limitiﬁg values of g .(7.32b) and h
(7.38a) in the neighborhood of the centerline it can be seen that for all
values of £ (7.40) predicts rotation which‘ultimately points the leading edge
of the disk toward the centerline. In such an orientation the disk develops
a sidewise velocity which carries it toward the centerline where its angular
velocity is zero. If the leading edge continues across the centerline the
rotation will be reversed as will the sidewise motion., Thus ultimately the
disk will translate edgewise along the cylinder axis. The experiments of
Squires and Squires [1937] indicate the edgewise orientation to be stablé at
Reynolds numbers below about 0,003, while the planewise orientation is stable
above 0,02, Cox [1965] has shown that the fluid's inertia tends to stabilize
the planewise motion, but his analysis is valié only for an unbounded domain.

Since (7.28) was derived from the plane wall results the disk will
behave near the tube wall in the way already described in part 7a. That is}
it will tend ultimately to orient itself with its plane at 45° to the wall,
and its leading edge directed away from it, Another special case of (7.39)
occurs when the plane of the disk is in the 1-3 plane of the cylinder. The
disk will then fall edgewise with an angular velocity about its own axis of
§2w23F/6nuoR2, and with no sidewise motion, which is the behavior which
Brenner and Happel first demonstrated for the sphere.

In the application of the above results it should be borne in mind
that their range of validity is confined to a/R less than about 0.15. For
instance, Auerbach [1966] observed the motion of disks (0.8 > a/R > 0,2) in

a Newtonian fluid., When released near the axis in the planewise orientation

the rotation of the disks was consistent with the predictions of (7.40). However,
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instead of falling along the axis edgewise the disks performed a zig-zag
motion between the axis and the wall, Auerbach also obsérved that when the
disks were released edgewise they maintained their initial orientation which
is in accord with (7.40),

As before the only particle which can be considered for non-Newtonian
fluids is the sphere. The velocities of a sphere in free fall under the
influence of an outside force -an can be calculated from (5.35) and (5.36)
(the transient terms given by (6.5) are negligible in this case)

a.t+a

5.3 a T a, 12 1 2

U=« i (U (F) - gkyaU,) - & ;’é'('T::—)(dals = 5 dgqa U5 (7.41)
aw

= T 23

a=-i, 2 Upy (7.42)

where the Stokes speed is U°°l is given by (3.9) as F/quoa. It is easily
verifiable from (7.21) that there can be no other components of U or f.
Each of the wall-effect tensor c§mponents in (7.41) and (7.42) is given above
by approximate formulae valid near the centerline and the wall except for
d331 which has been determined only near the wall. However, it is easy to
see from (7.21) that dyay is of the form

dyyy = © % + 0(b/R)° | | (7.43)
where ¢ is an undetermined constantg. From (7.38a) and (7.41) it is clear
that a calculatioﬁ of this constant must give %-c > 0,598, Otherwise the
analysis given in this paper will not explain the observed radial migration

of spheres moving through polymer solutions. -

% It can be shown that 4 can be calculated from a solution similar to that
of Brenner and Happel for the case when the sphere moves along a chord
of the cross section shown in Figure 3.
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In falling sphere viscometry the terminal velocity is measured by
timing a sphere over a known vertical distance, It is clear from (7.41) that,
in accurate work, measurement must also be made of the radial positions bl

and b, of the sphere at the vertical positions s, and s, respectively. The

1

vertical component of velocity is ds/dt, and by integration of (7.41) it is

found from (7.32a) that

. t
S,=8 U
2. 1.y +0.6977 5--;”-1-J b2(0)de , (7.44)
t s 3 t .
R o
where t is the elapsed time, and

- ’ \ a

Ug = U (F) - 2.1044 2 U_, (7.u5)

. o s "'3 ) .
The centerline velocity, Us’ is to 0(R 7) the non-Newtonian equivalent of
Faxen's wall correction formula. For a given sphere in a given tube the

radial velocity db/dt near the centerline is from (7.27) and (7.41) of the.

form

db ' '

T-W, (7.46)
and hence by integration ln(b2/bl) = Mt . (7.u47)

The constant M can be deduced from (7.41) and will contain the unknown
constant ¢ of (7.43), With the help of (7.46) the integral in (7,44) can be

evaluated as

1 tb(e)Qde = bg-bi | (7.48)
t “ 2 in(b./b.) °* *
[o) 2 1 .

where M has been eliminated with (7.47), From (7.44) and by expansion of the
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logarithm in (7.48) the centerline velocity Us can be reduced to the formula

2 2
S, b, +b (b,-b,)
_ 21 a 271 1°"17"2
U, T 0.6977 3 U () [ - § 5,(b+b; t eeeed o (7.49)

This formula is éufficiently accurate for most practical purposes since terms
of O(bu) in (7.44).and 0(b3) in (7.46) have been neglected.

Tanner [1964] feports that radial migration increases with sphere size,
and that beyond a certain size he observed a marked increase in the fall-time
scatter. These results are in accord with (7.41) and (7.49), The StokesAspeed
is calculated from

2
Unp = 208pa°g/Su_ s (7.50)

where Ap 1is the density and the particle-fluid density difference and g the
gravitational acceleration. Hence according to (7.41) the radial migration velo-
city increases as the fifth power of the sphere radius, and for the larger spheres
the neglect of the second term in (7.49) will,manifeét itself as scatter. Tanner
also found the Faxen wall correction formula to.be unsatisfactory. This is to be
expected from (7.45) since for shear thinning fluids U _(F) is greater than le;
thus the usual Faxen formula overcorrects for the effect of the walls.

In addition to yielding a formula for.the.centerline velocity the
migration velocity can be used to obtain an estimate of a.+a, from radial

1 72

position measurements. Near the wall d3 and d331 can be found from (7.28),

13

and by integration the change in radial position is given by

a,t+oa

C(Reby) -(Reby)? = Ba UZ (Dot (7.51)
o)

Hence if My is known and Uy is calculated from (7.50) then (al+a2) can be

found.
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No terminal velocity data are available in thch radial positions have
been measufed. Turian [1964] measured fall times for spheres in cylinders.of
seven different diameters. If the radial position cofrection is neglected
thése data provide a test of the centerline velocity formula (7.45) which is
the one dimensional form of (1.1l). In terms of the experimeﬂtal quantities
(7.45) becomes

2.10u4 Ap dg 1 (1 - 2:089

V=0u-"T17 wy 5 - 2 1o (D) x (7.52)

where d and D are respectively the sphere and cylinder diameters. Included

in this formula is the next term in Faxen's series which provides an eétimate
of the neglected higher order terms.lo In the most extreme case the term in
parenthesis modifies 1/D by less than one per cent. In Figure 4 are shown
typical plots of the terminal velocity data of Turian for a 1.25 per cent
solution of hydroxyethyl cellulose (HEC) in water at 20°C. Similar data for
other sphere sizes were also obtained by Turianf From the least-square fitted
lines, such as those shown-in Figure b, values by U; and Mo werebcalculated
from (7.52)., Since the effect of the cylinder wall in (7,52) is of the

second order, accurate estimgtes of Mo cannot be expected, and this is evident
from the values in Table I, Thé large érror estimates in Mo arise becaﬁse

of the relatively small chaﬂge in terminéi velocity over. the range of cylinder

sizes,

19 1n a future publication it will be shown that the term of O(Dfs) is indeed

the next term in Faxen's serles, and that the non-Newtonian effects are
o(F°p%).
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Sphere diam. em. . U_ cm/sec ’ M, Poise _ Apd3 gm
Ruby 0.06350 0.,00608 1071? 0.000764
Ruby 0.07620 0,00886 lll:? ) 0.00132
Ruby 0.1000 0.0154 l29:}0 0.00298
Ruby 0.15875 0.0410 108+2 0.0118
Steel 0,15875 0.108 96,7+6.7 0,0272
mean 110
Table I

For a given fiuid the slope of fhe liﬁes in Figure 4 depends on
Apd3 which is shown in the last column of fhe téble to change by a factor of
almost 40 for these data. The terminal veldqities of a steel sphere of twice
the size of the one in the above table did not plot as a straight line,

Upon addition of the contributions in (3.9) the sphere velocity in
an unbounded region can be expressed as an apparent fluidity by

éral_ 2 4

= =5—'-%(F ) +o(—f-2-) s ' (7.53)
no uo 6rna 6ma

where A is a combination of material constants which can be found from (3.9).
The appareﬁt fluidity was calculated from th; U_ values in Table I, and a
plot of this quantity against (F/Bna2)2 is shown in Figure 5, The four ruby
spheres appear to fall into the range in which the term O(F/6wa2)u.is
negligible as indicated by the close agreement of My extrapolated from this
plot and the mean value obtained from the wal}-effect. In fact the mean of
the three best values in Table I is 109 Poise. Turian [1964] used an
empirical meth;d to obtain extrapolated values of Hys And his value of

113 Poise is shown in Figure 5 for comparisen., Turian has measured terminal

velocities for other polymer solutions at various concentrations and temperatures,
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and similar treatment of these data gives the same degree of agreement between
M deduced from the wall effect and that found by extrapolation of the
fluidity., |

| The value of F/S'na2 for the steel ball is about five times that of
the largest ruby sphere, and its apparent viscosity deviates.significantly
from the line of Figure 5, This behavior is in accord with the derivation of
the wall effect formula (1,1) which remains vaiid beyond the
range of the third order approximation to the Rivlin-Ericksen fluid from

which (7.53) is derived.
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Appendix

Theories of the stress tensor involving memory functionals, usually
integrals, can be shown to reduce to the approximations of the type given
by (2.4), (2.5) and (2.6) by expansion of the strain tensor as a Taylor's
series in powers of the time lapse. This process yields explicit formulae
for the Rivlin-Ericksen coefficients in terms of the memory integrals, and
since it is given elsewhere (see Truesdell & Noll [1965]) in detail it will
not be discussed further.

For theories of the differential type the series (3.1) and (3.2) are
substituted into the constitutive equation, and upon collection of terms of
the same order it is a matter of algebraic manipulation to show that the
resulting stress approximations are precisely the ones obtained from the
Rivlin-Ericksen approximations. This procedurerwill be illustrated for

Oldroyd's [1958] model which can be written as

- ]
= DT =(1) = = =(1) vl = ::.:(]_) uo =(1)= =
T+AD-E—L|1(A T+T-A )+—2—l T:A +—2—'A 1:T
=(1) v '

) =(1) DA =(1),2 , "2 5 2(1)_=(1)

= no[A + 12 T u2(A )T+ 7 1A A7) (A1)
where A, Mys Vs ué, 12, Hoys Vo and n, are material constants.
The stress T is expanded as

T = T, +T,+T,+ ... B \ o (A2)

and when (3.1), (3.2) and (A2) are substituted into (Al), and terms of the

same order are collected the first two %i are found to be
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S

-m
"

1y _ (A3)

.+ n 20y 4 (A,2)) oA (1,1)+ n ( yED ()2, aw
2 Py * N o Ty———— 1)+ n (uy-u, )7, (au

-3
1]

where the notation is the same as that used in (3.%) and (3.5). Comparison
of (A3) and (A4) with the results obtained by the substitution of (3.1)

and (3.2) into (2.2), (2.4) and (2.5) gives
Mg T Mg (zero-shear viscosity) , (A5)
0 = MMpthy) sy tay = o Gy - (46)

When %3 is expressed similarly to (A3) and (Au4) it can be shown that

n,
B = n Al(xl A2) 82+83 = ——-[(ul it )(ul )+ A (A -\ )+(ul “é)(vz"“l)] s
3 _ . -
5-Bl+82 = Lo, Og-20) + A ()] o .’ (A7)

Spriggs [1966] has proposed a generalization of Oldroyd's model in

which the stress is constructed from a sum of contributions as

%(n)
1

(A8)

Lo 111
]
ne~-18

n
where the 5(n)

(n) [(n) (n)
Ay T A ey

satisfy Oldroyd's equation (Al) with material constants

, etc. These material constants are related to six independent

' (n) _ -« (n) _ ., (n)_ -a
constants Al, AQ,.el, 52, @, ng by Al = Aln , A2 = AQ, Myt os Aln (l+el),
(n) _ (n) (n)
W, = A2(l+e2), v, o E §-Aln (l+el), v, " = (l+e )A
(n) _ (n) _ 1
o 0, mg " =0, Z(a) ° (A9)
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where 2Z( ) is the Riemann zeta function

z2(x) = Jao* . (A10)
n=1l .

%(n) should not be confused with the terﬁs in the

The contributions
perturbation series (A2). When the process carried out above for Qldroyd's
‘equation is applied to the Sprigg's model the Rivlin-Ericksen coefficients

can be shown to be given by

- " Z(2a) _ Z(2a)
My = Mg s @ 7 no(x2 - "E?ES'AI) yata = n, (i X (Lre)) - X2(1+52)) ,
nA
B = 2T;§-(z(3a)xl—z(2a)x2) ,
n, A (e ) _ | L
B, ¥ B, = %70y 3 (Z(3a)x1(l+€1)f z(2a)(1+ez)x2)+-Al(z(2a)xz-z(3a)xl) ,
25 48 = oy (1+e ) (2(20)2 -z(sa)x')+x-(é(2a)£ (1te )-Z(3a)A (1+e )j
27 "2 z(e) R T 11 2 2 11

(All)_

It should be bourne in'mind'that models such as Oldroyd's and Spriggs' may

" give inadequate descriptions of the stress in certain flows. Hence |

Rivlin-Ericksen coefficients calculated from fitted valués”of the constants
of these models may well be unrealistic,

Giesekus proposed a theory; equivalent to that of Rivlin and Ericksen,

which is based on a sef of kinematical tensors §(§) constructed from
- - . " az(N-1)
SRS S R (A12)
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It follows from (2.2) and (Al2) that the. §(N)

terms of the K(N)

can be expressed directly in
and vice versa. For his third order approximation

Giesekus [1963] writes

L 11}

(1) ng) £(2) | Kgll)(§(l))2

= —ip + 2n°[f K(s) %(3)

©

+

:§(l) §(l)]

el

. K‘(>2l)(§(2).1=:(l) L D) )

1 . (A13)

With the use of the identity (2.2) it follows from (2.4), (2.5) and (2.6) that

- o (2) _ . .(11) _ o (3)
Vo Mo 2 % % M% ’ (al+a2) = %o ./2 > Bl = Mo >
L) (3 |
- 11 ) 3 - (21)
R N e I L NoXo /2 y (AL4)

The interrelationships between the above theories are particularly useful in
checking results of perturbation calculations. For example,‘the quantity
6;3 in (3.9) was obtained from Giesekus [1963] in which he used hié stress
equation (Al13). The same problem had previouély_been solved by Leslie [1961]
who used Oidroyd's equation and Cagwell and Schwarz [1962] who used the
Rivlin-Ericksen theory. With the identities given above, it is possible to

show that the results for ﬁ; of Leslie and Giesekus are in agreement

3
while that of Caswell and Schwarz is probably in error.

The abbve mentioned theories describe: isotropic fluids. In a
series of papers Ericksen (see Truesdell & Noll [1965]) has introduced and
studied a class of anisotropic fluids. The behavior of these materials in
slow flow has not been worked out in detail, but according to Denn and

Metzner [1966] the theory appears to admit behavior different from that

predicted by the Rivlin-Ericksen theory.
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Figure 2.
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Captions for Figures

Motion of an Ovoid with tﬁe Gravity Force Parailel to a Plane.
Rotation of a Disk Near a Plane.

a. Diameter Perpendicular to the Gravity Force.

b. Diameter Parallel to the Gravity Force.

Cartesian Coordinates for the Cylinder.

The xa-axis is directed out of the page.

The Effect of Cylinder Size on the Terminal Velocity of Spheres.
Data of R. M. Turian [1964] for 1.25% HEC in Water.

Fluidity Extrapolation Plot for the Data of R. M. Turian [1964].
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